Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
J Med Chem ; 67(5): 3419-3436, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38385428

ABSTRACT

Androgen receptor (AR) antagonists play important roles in the treatment of castration-resistant prostate cancer (CRPC). The glucocorticoid receptor (GR) upregulation leads to drug resistance for clinically used antiandrogens. Therefore, blocking AR/GR signaling simultaneously has become an efficient strategy to overcome the drug resistance of CRPC. Our previous work indicated that Z19 could inhibit the activity of both AR and GR. Herein, we optimized the structure of Z19 and identified GA32 as a potent AR/GR dual inhibitor. GA32 efficiently reduced the mRNA and protein levels of AR/GR downstream genes. GA32 efficiently inhibited the proliferation of enzalutamide resistance CRPC both in vitro and in vivo. GA32 could directly bind to AR and GR, and the predicted binding modes for GA32 with AR/GR suggested that GA32 binds to the AR or GR hormone binding pocket. This work provides a potential lead compound with dual AR/GR inhibitory activity to conquer the drug resistance of CRPC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Receptors, Androgen/metabolism , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Glucocorticoid/metabolism , Drug Resistance, Neoplasm , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Nitriles/therapeutic use , Cell Line, Tumor
2.
Langmuir ; 40(4): 2091-2101, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38227788

ABSTRACT

Phase-selective organogelators (PSOGs) are considered as a prospective tool for their application in oil spill remediation. However, the number of reports on the PSOGs that can be used in powder form for prompt phase-selective gelation of crude oils is still limited. In this study, a series of compounds with l-mandelic acid as the scaffold bearing different amino acid fragments have been prepared. Also, the gelation behaviors and properties of these derivatives toward organic liquids, product oils, and a type of Chinese crude oil were investigated via heating-and-cooling process, stirring, or resting operation. Besides, the micromorphologies of the resulting gels and the driving forces for the gel formation have been studied by scanning electron microscopy, Fourier transform infrared, UV spectroscopy, concentration-dependent 1H NMR, and X-ray diffraction. Particularly, gelator C15-Phe-Mac-Nap was shown to have the capability of congealing the Chinese crude oil selectively from water in powder form with a relatively lower gelator dosage, as compared with the other gelators we reported in the current and previous works. Moreover, gelator C15-Phe-Mac-Nap displayed some advantageous behaviors such as the reusability of gelator, excellent mechanical and chemical stability of the crude oil gels, and nontoxicity of the gelator in the aquatic environment, indicating its great potential application value for marine oil spill remediation.

3.
Dalton Trans ; 53(1): 215-222, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38032350

ABSTRACT

Solar energy can be harvested using biological light-driven ion pumps for the sustainability of life. It remains a significant challenge to develop high-performance artificial light-driven ion pumps for solar energy harvesting in all solid-state materials. Here, we exploit the benefits of short channel lengths and efficient light absorption to demonstrate efficient photo-driven ion transport in slightly reduced vertical graphene oxide membranes (GOMs). Remarkably, this photo-driven ion pump exhibits excellent ability, countering a 10-fold electrolyte concentration gradient. We propose a plausible mechanism where light illumination enhances the electric potential of ion channels on GOMs triggered by the separation of photoexcited charge carriers between the sp2 and sp3 carbon clusters. This results in the establishment of an electric potential difference across the effective ion channels composed of sp3 carbon clusters, thus driving the directional transport of cations from the illuminated side to the non-illuminated side. The promising results of this study provide new possibilities for the application of vertical 2D nanofluidic membranes in areas such as artificial photosynthesis, light harvesting, and water treatment.

4.
Materials (Basel) ; 16(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38005023

ABSTRACT

In this study, we improved the growth procedure of EuTe and realized the epitaxial growth of EuTe4. Our research demonstrated a selective growth of both EuTe and EuTe4 on Si(100) substrates using the molecular beam epitaxy (MBE) technique and reveals that the substrate temperature plays a crucial role in determining the structural phase of the grown films: EuTe can be obtained at a substrate temperature of 220 °C while lowering down the temperature to 205 °C leads to the formation of EuTe4. A comparative analysis of the transmittance spectra of these two films manifested that EuTe is a semiconductor, whereas EuTe4 exhibits charge density wave (CDW) behavior at room temperature. The magnetic measurements displayed the antiferromagnetic nature in EuTe and EuTe4, with Néel temperatures of 10.5 and 7.1 K, respectively. Our findings highlight the potential for controllable growth of EuTe and EuTe4 thin films, providing a platform for further exploration of magnetism and CDW phenomena in rare earth tellurides.

5.
iScience ; 26(10): 107968, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37810251

ABSTRACT

Long interspersed element 1 (LINE-1) is the only currently known active autonomous transposon in humans, and its retrotransposition may cause deleterious effects on the structure and function of host cell genomes and result in sporadic genetic diseases. Host cells therefore developed defense strategies to restrict LINE-1 mobilization. In this study, we demonstrated that IFN-inducible Schlafen5 (SLFN5) inhibits LINE-1 retrotransposition. Mechanistic studies revealed that SLFN5 interrupts LINE-1 ribonucleoprotein particle (RNP) formation, thus diminishing nuclear entry of the LINE-1 RNA template and subsequent LINE-1 cDNA production. The ability of SLFN5 to bind to LINE-1 RNA and the involvement of the helicase domain of SLFN5 in its inhibitory activity suggest a mechanism that SLFN5 binds to LINE-1 RNA followed by dissociation of ORF1p through its helicase activity, resulting in impaired RNP formation. These data highlight a new mechanism of host cells to restrict LINE-1 mobilization.

6.
Drug Discov Today ; 28(9): 103694, 2023 09.
Article in English | MEDLINE | ID: mdl-37393985

ABSTRACT

The cyclic GMP-AMP synthase stimulator (cGAS)-stimulator of interferon gene (STING) signaling pathway has an integral role in the host immune response through DNA sensing followed by inducing a robust innate immune defense program. STING has become a promising therapeutic target associated with multiple diseases, including various inflammatory diseases, cancer, and infectious diseases, among others. Thus, modulators of STING are regarded as emerging therapeutic agents. Recent progress has been made in STING research, including recently identified STING-mediated regulatory pathways, the development of a new STING modulator, and the new association of STING with disease. In this review, we focus on recent trends in the development of STING modulators, including structures, mechanisms, and clinical application.


Subject(s)
Communicable Diseases , Neoplasms , Humans , Nucleotidyltransferases/metabolism , Signal Transduction/genetics , DNA , Neoplasms/drug therapy , Immunity, Innate
7.
Medicine (Baltimore) ; 102(28): e34330, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37443478

ABSTRACT

RATIONALE: Colorectal cancer (CRC) is one of the most prevalent and deadly cancers worldwide, and approximately 50% of patients with early-stage disease develop metastases. A critical limitation for successful management of CRC is early disease detection and identification of progression. Next-generation sequencing-based circulating tumor DNA (ctDNA) profiling has emerged as a promising biomarker for the assessment of minimal or molecular residual disease in CRC. PATIENT CONCERNS: The patient was initially diagnosed with resectable CRC with uncertain small lung nodules. DIAGNOSES: The patient was diagnosed with sigmoid colon adenocarcinoma placed at 15 to 20 cm above the anal verge (ypT4N1R0). Lung nodules were found in the apical part of the upper lobe of the right lung and the dorsal segment of the lower lobe of the left lung. INTERVENTIONS: The patient received systemic therapy and local treatment and plasma ctDNA-MRD detection was performed for monitoring the molecular disease status after surgery. OUTCOMES: The patient achieved a complete response after treatment. However, he presented with disease recurrence in liver lesions. The postoperative ctDNA detection suggested the possibility of micrometastatic pulmonary disease, and that was confirmed by follow-up examination. Serial ctDNA detection revealed disease relapse ahead of radiologic imaging by a lead time of 9 months. This case demonstrated the potential of ctDNA analysis to be a sensitive and specific tool for the detection of micrometastatic disease and prediction of recurrence.


Subject(s)
Adenocarcinoma , Circulating Tumor DNA , Colonic Neoplasms , Colorectal Neoplasms , Male , Humans , Colonic Neoplasms/diagnosis , Colonic Neoplasms/genetics , Circulating Tumor DNA/genetics , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/genetics , Colorectal Neoplasms/pathology , Neoplasm Micrometastasis , Biomarkers, Tumor/genetics
8.
Nanomaterials (Basel) ; 13(10)2023 May 15.
Article in English | MEDLINE | ID: mdl-37242061

ABSTRACT

The development of simple and probe-integrated aptamer sensors for the electrochemical detection of tumor biomarkers is of great significance for the diagnosis of tumors and evaluation of prognosis. In this work, a probe-integrated aptamer sensor is demonstrated based on the stable confinement of an electrochemical probe in a bipolar nanochannel film, which can realize the reagentless electrochemical detection of the tumor biomarker carcinoembryonic antigen (CEA). To realize the stable immobilization of a large amount of the cationic electrochemical probe methylene blue (MB), a two-layer silica nanochannel array (SNF) with asymmetric charge was grown on the supporting electrode from bipolar SNF (bp-SNF). The inner SNF is negatively charged (n-SNF), and the outer-layer SNF is positively charged (p-SNF). The dual electrostatic interaction including the electrostatic adsorption from n-SNF and the electrostatic repulsion from p-SNF achieve the stable confinement of MB in bp-SNF. The recognitive interface is fabricated by the covalent immobilization of the CEA aptamer on the outer surface of bp-SNF, followed by the blocking of non-specific binding sites. Owing to the stable and abundant immobilized probes and highly specific aptamer interface, the developed aptamer sensor enables the sensitive detection of CEA in the range of 1 pg/mL to 1 µg/mL with a low limit of detection (LOD, 0.22 pg/mL, S/N = 3). Owing to the high selectivity and stability of the developed biosensor, reagentless electrochemical detection of CEA in serum was realized.

9.
Molecules ; 28(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37110848

ABSTRACT

KRAS gene mutation is widespread in tumors and plays an important role in various malignancies. Targeting KRAS mutations is regarded as the "holy grail" of targeted cancer therapies. Recently, multiple strategies, including covalent binding strategy, targeted protein degradation strategy, targeting protein and protein interaction strategy, salt bridge strategy, and multivalent strategy, have been adopted to develop KRAS direct inhibitors for anti-cancer therapy. Various KRAS-directed inhibitors have been developed, including the FDA-approved drugs sotorasib and adagrasib, KRAS-G12D inhibitor MRTX1133, and KRAS-G12V inhibitor JAB-23000, etc. The different strategies greatly promote the development of KRAS inhibitors. Herein, the strategies are summarized, which would shed light on the drug discovery for both KRAS and other "undruggable" targets.


Subject(s)
Drug Discovery , Proto-Oncogene Proteins p21(ras) , Proto-Oncogene Proteins p21(ras)/genetics , Mutation , Proteolysis
10.
Int Immunopharmacol ; 118: 109993, 2023 May.
Article in English | MEDLINE | ID: mdl-36931170

ABSTRACT

As the principal ligand of programmed death 1 (PD-1), PD-L1 can induce the exhaustion of effector T cells and the escape of cancer cells through interacting with PD-1 in many solid malignancies. Therefore, targeting the PD-1/PD-L1 axis has become an attractive strategy in cancer immunotherapy. However, at present, no small-molecule agents targeting PD1/PD-L1 pathways have been successfully used in clinical applications. Here, we first found that the natural product Triptolide could significantly reduce the PD-L1 expression on the surface of NSCLC cells. This down-regulation is related to the activity of EGFR signaling pathway. Moreover, the reduction of PD-L1 caused by Triptolide could be substantially rescued by IFN-γ. Furthermore, our findings suggest that Triptolide significantly inhibits the activity of the IFN-γ-JAK-STAT-IRF1 signaling axis, as evidenced by the noticeable reduction in both basal and phosphorylated levels of STAT3. Thus, in NSCLC cells, Triptolide reduces PD-L1 expression both through the EGFR and IFN-γ/JAK1/JAK2/STAT1/STAT3/IRF1 signaling pathways. The results provide new insights into the application of Triptolide in the immune checkpoints treatment of NSCLCs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/metabolism , Cell Line, Tumor , Interferon-gamma/metabolism , Signal Transduction , ErbB Receptors/metabolism , Interferon Regulatory Factor-1/metabolism
11.
Eur J Med Chem ; 250: 115188, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36773550

ABSTRACT

Host restriction factor APOBEC3G (A3G) efficiently restricts Vif-deficient HIV-1 by being packaged with progeny virions and causing the G to A mutation during HIV-1 viral DNA synthesis as the progeny virus infects new cells. HIV-1 expresses Vif protein to resist the activity of A3G by mediating A3G degradation. This process requires the self-association of Vif in concert with A3G proteins, protein chaperones, and factors of the ubiquitination machinery, which are potential targets to discover novel anti-HIV drugs. This review will describe compounds that have been reported so far to inhibit viral replication of HIV-1 by protecting A3G from Vif-mediated degradation.


Subject(s)
HIV-1 , vif Gene Products, Human Immunodeficiency Virus , Humans , vif Gene Products, Human Immunodeficiency Virus/metabolism , HIV-1/metabolism , Cell Line , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Mutation , Virus Replication , APOBEC-3G Deaminase/metabolism
12.
Eur J Med Chem ; 247: 115077, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36587421

ABSTRACT

The androgen receptor (AR) is dominant in prostate cancer (PCa) pathology. Current therapeutic agents for advanced PCa include androgen synthesis inhibitors and AR antagonists that bind to the hormone binding pocket (HBP) at the ligand binding domain (LBD). However, AR amplification, AR splice variants (AR-Vs) expression, and intra-tumoral de novo synthesis of androgens result in the reactivation of AR signalling. The AR N-terminal domain (NTD) plays an essential role in AR transcriptional activity. The AR inhibitor targeting NTD could potentially block the activation of both full-length AR and AR-Vs, thus overcoming major resistance mechanisms to current treatments. This review discusses the progress of research in various NTD inhibitors and provides new insight into the development of AR-NTD inhibitors.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Receptors, Androgen/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Androgens/metabolism , Androgens/therapeutic use , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Prostatic Neoplasms/drug therapy , Protein Domains
13.
Elife ; 122023 01 19.
Article in English | MEDLINE | ID: mdl-36656639

ABSTRACT

In patients with castration-resistant prostate cancer (CRPC), clinical resistances such as androgen receptor (AR) mutation, AR overexpression, and AR splice variants (ARVs) limit the effectiveness of second-generation antiandrogens (SGAs). Several strategies have been implemented to develop novel antiandrogens to circumvent the occurring resistance. Here, we found and identified a bifunctional small molecule Z15, which is both an effective AR antagonist and a selective AR degrader. Z15 could directly interact with the ligand-binding domain (LBD) and activation function-1 region of AR, and promote AR degradation through the proteasome pathway. In vitro and in vivo studies showed that Z15 efficiently suppressed AR, AR mutants and ARVs transcription activity, downregulated mRNA and protein levels of AR downstream target genes, thereby overcoming AR LBD mutations, AR amplification, and ARVs-induced SGAs resistance in CRPC. In conclusion, our data illustrate the synergistic importance of AR antagonism and degradation in advanced prostate cancer treatment.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Receptors, Androgen/metabolism , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Signal Transduction , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm , Nitriles/pharmacology , Nitriles/therapeutic use
14.
Eur J Med Chem ; 246: 114981, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36481598

ABSTRACT

The development of dual inhibitors of HIV-1 protease and reverse transcriptase is an attractive strategy for multi-target therapeutic of AIDS, which may be privileged in delaying the occurrence of drug resistance. We herein designed a novel kind of dual inhibitors with benzofuran or indole cores. Biological results showed that a number of inhibitors displayed significant activity against both HIV-1 protease and reverse transcriptase. Among which, inhibitor 10f exhibited a good correlation with an approximate ratio of 1: 2 between the two enzymes. Furthermore, the dual inhibitors illustrated similar potency against both the wild-type virus and drug-resistant mutant. In addition, the molecular dynamic simulation studies verified the dual actions of such inhibitors.


Subject(s)
Anti-HIV Agents , HIV Protease Inhibitors , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Anti-HIV Agents/pharmacology , HIV Protease , RNA-Directed DNA Polymerase , HIV Reverse Transcriptase , HIV Protease Inhibitors/pharmacology , HIV Protease Inhibitors/chemistry
15.
Curr Med Chem ; 30(27): 3137-3155, 2023.
Article in English | MEDLINE | ID: mdl-36200255

ABSTRACT

Targeted protein degradation (TPD) strategies have become a new trend in drug discovery due to the capability of triggering the degradation of protein of interest (POI) selectively and effectively in recent decades. Particularly, the hydrophobic tag tethering degrader (HyTTD) has drawn a lot of attention and may offer a promising strategy for new drug research and development in the future. Herein, we will give an overview of the development of HyTTD, the structure-activity relationship (SAR) between HyTTD and linkers, HyTs, and ligand motifs, as well as the various HyTTDs targeting different targets, thus offering a rational strategy for the design of HyTTDs in further TPD drug discovery.


Subject(s)
Drug Discovery , Skin Neoplasms , Humans , Proteolysis , Structure-Activity Relationship
16.
Int J Mol Sci ; 23(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36430656

ABSTRACT

With the increasing prevalence of drug-resistant variants, novel potent HIV-1 protease inhibitors with broad-spectrum antiviral activity against multidrug-resistant causative viruses are urgently needed. Herein, we designed and synthesized a new series of HIV-1 protease inhibitors with phenols or polyphenols as the P2 ligands and a variety of sulfonamide analogs as the P2' ligands. A number of these new inhibitors showed superb enzymatic inhibitory activity and antiviral activity. In particular, inhibitors 15d and 15f exhibited potent enzymatic inhibitory activity in the low picomolar range, and the latter showed excellent activity against the Darunavir-resistant HIV-1 variant. Furthermore, the molecular modeling studies provided insight into the ligand-binding site interactions between inhibitors and the enzyme cavity, and they sparked inspiration for the further optimization of potent inhibitors.


Subject(s)
HIV Protease Inhibitors , HIV-1 , Ligands , Polyphenols/pharmacology , Phenols/pharmacology , HIV Protease Inhibitors/pharmacology , HIV Protease Inhibitors/chemistry
17.
Molecules ; 27(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36431829

ABSTRACT

Cysteine is one of the least abundant amino acids in proteins of many organisms, which plays a crucial role in catalysis, signal transduction, and redox regulation of gene expression. The thiol group of cysteine possesses the ability to perform nucleophilic and redox-active functions that are not feasible for other natural amino acids. Cysteine is the most common covalent amino acid residue and has been shown to react with a variety of warheads, especially Michael receptors. These unique properties have led to widespread interest in this nucleophile, leading to the development of a variety of cysteine-targeting warheads with different chemical compositions. Herein, we summarized the various covalent warheads targeting cysteine residue and their application in drug development.


Subject(s)
Cysteine , Drug Development , Cysteine/chemistry , Amino Acids/chemistry , Sulfhydryl Compounds/chemistry , Oxidation-Reduction
18.
Front Genet ; 13: 989327, 2022.
Article in English | MEDLINE | ID: mdl-36147494

ABSTRACT

Colorectal cancer (CRC) is a common malignant tumor worldwide. Lipid metabolism is a prerequisite for the growth, proliferation and invasion of cancer cells. However, the lipid metabolism-related gene signature and its underlying molecular mechanisms remain unclear. The aim of this study was to establish a lipid metabolism signature risk model for survival prediction in CRC and to investigate the effect of gene signature on the immune microenvironment. Lipid metabolism-mediated genes (LMGs) were obtained from the Molecular Signatures Database. The consensus molecular subtypes were established using "ConsensusClusterPlus" based on LMGs and the cancer genome atlas (TCGA) data. The risk model was established using univariate and multivariate Cox regression with TCGA database and independently validated in the international cancer genome consortium (ICGC) datasets. Immune infiltration in the risk model was developed using CIBERSORT and xCell analyses. A total of 267 differentially expressed genes (DEGs) were identified between subtype 1 and subtype 2 from consensus molecular subtypes, including 153 upregulated DEGs and 114 downregulated DEGs. 21 DEGs associated with overall survival (OS) were selected using univariate Cox regression analysis. Furthermore, a prognostic risk model was constructed using the risk coefficients and gene expression of eleven-gene signature. Patients with a high-risk score had poorer OS compared with patients in the low-risk score group (p = 3.36e-07) in the TCGA cohort and the validationdatasets (p = 4.03e-05). Analysis of immune infiltration identified multiple T cells were associated with better prognosis in the low-risk group, including Th2 cells (p = 0.0208), regulatory T cells (p = 0.0425), and gammadelta T cells (p = 0.0112). A nomogram integrating the risk model and clinical characteristics was further developed to predict the prognosis of patients with CRC. In conclusion, our study revealed that the expression of lipid-metabolism genes were correlated with the immune microenvironment. The eleven-gene signature might be useful for prediction the prognosis of CRC patients.

19.
Front Immunol ; 13: 954129, 2022.
Article in English | MEDLINE | ID: mdl-36172373

ABSTRACT

The cGAS-STING signaling plays an integral role in the host immune response, and the abnormal activation of cGAS-STING is highly related to various autoimmune diseases. Therefore, targeting the cGAS-STING-TBK1 axis has become a promising strategy in therapy of autoimmune diseases. Herein, we summarized the key pathways mediated by the cGAS-STING-TBK1 axis and various cGAS-STING-TBK1 related autoimmune diseases, as well as the recent development of cGAS, STING, or TBK1 selective inhibitors and their potential application in therapy of cGAS-STING-TBK1 related autoimmune diseases. Overall, the review highlights that inhibiting cGAS-STING-TBK1 signaling is an attractive strategy for autoimmune disease therapy.


Subject(s)
Autoimmune Diseases , Protein Serine-Threonine Kinases , Autoimmune Diseases/drug therapy , Humans , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Signal Transduction/physiology
20.
Bioorg Med Chem Lett ; 75: 128952, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36031018

ABSTRACT

Prostate cancer (PCa) is the most frequently diagnosed male malignant tumor and remains the second leading cause of male cancer mortality in western countries. The development of novel antiandrogens to circumvent the drug resistance in anti-PCa treatment is highly demanded. Herein, we identified that gossypol (GOS) specificly inhibited the AR signaling. Further optimization of GOS derivatives led to the discovery of compound XY-32. XY-32 efficiently inhibits AR signaling with the IC50 of 1.23 µM. XY-32 downregulates both the full-length AR and the AR variable splice AR-V7 via suppressing the mRNA expression. It inhibits the proliferation of CRPC cells such as the LNCaP cells, the PC-3 cells, and enzalutamide resistance 22Rv1 cells. The work demonstrates the GOS derivatives represent a novel series of anti-androgen to conquer the acquired AR mutations or AR splice variants induced drug resistance of mCRPC.


Subject(s)
Gossypol , Prostatic Neoplasms, Castration-Resistant , Androgen Antagonists/pharmacology , Androgen Receptor Antagonists/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , Gossypol/pharmacology , Humans , Male , Nitriles , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , RNA, Messenger , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...